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The solitons in some geometrical field theories 

B M Barbashov, V V Nesterenko and A M Chervjakov 
Joint Institute for Nuclear Research, Dubna, USSR 

Received 31 August 1978, in final form 27 November 1978 

Abstract. Using the methods of differential geometry it is shown that the Born-Infeld scalar 
field in two-dimensional space-time and the relativistic string in three dimensions are 
described by the same non-linear Liouville equation ut, - U,, = R e'. This equation admits 
soliton solutions which may be stable or unstable, and there are periodical solutions among 
the stable ones. In the quantum case the solitons can be interpreted as massive particles, 
either stable or unstable with respect to the stability of the corresponding classical solution. 
The periodical soliton generates a series of resonances which have the equidistant mass 
spectrum. This result appears to be well suited to the theory of the closed relativistic string. 
In four dimensions the relativistic string is described by the same Liouville equation, but for 
the complex-valued function U. 

1. Introduction 

In recent years it has been discovered that a number of nonlinear fields admit soliton 
solutions (see e.g. Scott et a1 1973, Whitham 1974). In elementary particle physics 
these solutions can be interpreted as particles which are different from the quanta of the 
initial field (Skyrme 1961, Dashen et a1 1974a, b, 1975, Rajaraman 1975, Jackiw 
1977); so one nonlinear field describes particles of several kinds. However, this can be 
demonstrated in the complete form only in nonlinear models, which are very far from 
physical reality. A classic example here is the field satisfying the sine-Gordon equation 
in two-dimensional space-time (Faddeev and Takhtajan 1974). The investigation of 
the soliton solutions even in such abstract models is of interest from a methodological 
viewpoint at least. 

By means of differential geometry methods in this paper it is shown that the 
Born-Infeld massless scalar field in one space and one time dimension and the 
relativistic string moving in three-dimensional space-time are described by the 
nonlinear Liouville equation 

Urr - uXx = R e". (1) 
In differential geometry equation (1) is the Gauss equation (Stoker 1969) which 
connects the Gauss curvature of the surface K = R / 2  with the coefficients of the first 
fundamental form of this surface 

ds2=e"(dt2-dx2). (2) 
The Liouville equation (1) admits soliton-like solutions which may be stable or 

unstable, and there are periodical solutions among the stable ones. The addition of the 
term dependent on the soliton velocity to the canonical energy-momentum tensor 
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allows us to define the total energy, momentum and rest mass of the soliton. In 
quantum theory these soliton solutions can be interpreted as massive particles, either 
stable or unstable with respect to the stability of the corresponding classical solution. 
The quanta of the initial field remain massless after the separation of the solitons. In the 
quantum case, the periodical soliton generates a series of resonances which have an 
equidistant mass spectrum beginning from the first excited state. This periodical soliton 
appears to be well suited to the theory of the closed relativistic string. The results 
obtained show that the nonlinear models containing only a massless field can generate a 
rich spectrum of massive particles and resonances, and this spectrum cannot be 
obtained in perturbation theory in principle. 

2. The geometric approach to the Born-Infeld scalar field model and to the 
relativistic string theory 

The Born-Infeld scalar field in one space and one time dimension has the action (Born 
and Infeld 1934) 

where 
inverse length. The field 4(x,  t )  obeys the nonlinear equation 

= dd(x ,  t)/dx, 4z = dd(x ,  t ) / d t ,  and y is a constant with the dimension of 

(Y - 4: ) 4 x x  + 2 4 x 4 4 x t  - (Y + 4: )4tt = 0 ,  

4 ( x ,  t )  = (a(x f t). 

(4) 

which admits the wave solution of an arbitrary form propagating with the speed of light, 

The function (a is not fixed by equation (4). By these properties equation (4) differs 
from the well investigated ones: the sine-Gordon equation, the Korteweg-de Vries 
equation and the nonlinear Schrodinger equation. All these equations have soliton 
solutions of an exactly fixed form and which propagate with an arbitrary velocity U 
(Scott et a1 1973, Whitham 1974). 

Now we present the so-called geometric approach to the Born-Infeld scalar field 
model. In this approach the model under consideration is described by the nonlinear 
Liouville equation (1) which has soliton solutions of a definite form. 

In the work of Barbashov and Chernikov (1966a, b) the Born-Infeld scalar field was 
examined in parametrical representation by introducing the Lorentz vector x, (a, T ) ,  

with components 

x,(a, 7 )  = 71, x(a ,  71, Y(C.3 T )  = P 2 4 ( t b ,  T ) ,  x(u ,  7 ) ) ) .  

In the new variables, action (3) coincides with that for the infinite relativistic string in 
three-dimensional space-time (see e.g. Rebbi 1974, Scherk 1975), 

where i, = dx,(a, T ) / ~ T ,  x: = dx,(a, ~ ) / d a ,  g = detlgijl, gij = (13x,/du')dx,/du' is the 
metric tensor on the string world surface x,(a, T ) ,  i, j = 1, 2, U '  = T,  U = a, g = 1, 2, 3. 

The principle of least action, as applied to the functional ( 5 ) ,  leads to the problem of 
determining the extrema1 surface in three-dimensicnal pseudo-Euclidean space 

2 
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( r ,  x, y ) .  On the surface examined the isothermal coordinate system can always be 
chosen in the form 

g12 = XX'  = 0.  (6) 

In this case the equations of motion S \ l q / G x ,  = 0 are reduced to the D'Alambert 
equation for X & ( C T ,  T ) ,  

.?  I 2  x =g11=-g22=-x , 

xw -x;= 0. (7) 

Instead of searching for the vector x, (U, T) which describes the coordinates of the 
string world surface through the joint solution of the equations of motion (7) and of the 
nonlinear conditions (61, one can look for the first and second fundamental forms of the 
string world surface (Lund and Regge 1976, Lund 1977a, b, Omnes 1979, Barbashov 
and Koshkarov 1979). According to the basic theorem in the differential geometry of 
surfaces (Stoker 1969), the coefficients of these forms determine the position of the 
surface in the space up to translations and rotations. The first fundamental form is the 
squared interval between the two neighbouring points on the surface, and by virtue of 
(6) has the form 

ds2=dx,  dx" = g 1 1 ( d ~ ~ - d u ' ) = X ~ ( d ~ ~ -  du')!. (8) 

The second fundamental form is the length of the perpendicular from the given point of 
the surface to the tangent plane at the neighbouring point, 

dI2 = L d ~ ' + 2 M  d.r d g +  N du'. (9) 

The functions E,  M and N define the projections of the vectors x, if and XI' respectively 
onto the unit space-like vector m orthogonal to the i and x', 

X =r:l.i+rrTl~i+~m, . i ~ = r : ~ i + r : ~ ~ ~ + ~ m ,  ~ " = h ' : ~ i  + r : z x ' + ~ m ,  

where r i k  are the Christoffel symbols of the second kind of the string world surface, 

(10) 

(1 1) rl j k  = r  -1 Zg 11 ri,jk=4gli(agli/auk +agik/du1-dg1k/au1), 

in which i, j ,  k, I = 1, 2, u 1  = T ,  U' = CT. From equations ( 7 )  and (10) it follows that 

L = N. (12) 
The arbitrariness in the choice of the coordinate system on the surface examined 

which, remains after imposing conditions (6), can be used to fix the coefficients of the 
second fundamental form, 

(X *if)' = l,hz2(U * T) = - q i ,  (13) 

where $, are arbitrary functions in the general solution of equation (7 ) ,  

x , ~ ( g ,  T ) =  ( ~ + w ( u + T ) + l , h - w ( O - - T ) ) / 2 .  

Taking into account the invariance of equations (6) and (7) under the conformal 
transformations Ci i i = f* (g  + T), it can easily be shown that condition (13) may always 
be satisfied by the corresponding choice of the functions f *  (Barbashov and Koshkarov 
1979). The quantities q* are arbitrary functions of the variables U st T given before- 
hand. For simplicity we shall take these functions as constants. 
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Substituting expansions (10) into (13) and taking into account that m2 = -1, we 
obtain 

(LI tM)*  = q:. (14) 

So, only the coefficient g l l  = 1’ remains unfixed in the first and second fundamental 
forms. It must be defined from the Gauss and Codazzi equations connecting the 
coefficients of both fundamental forms of the surface. 

The Codazzi equations in the case under consideration have the form 

dL/au - dM/ai- = 0, aM/aa-aL/ar=o; 

hence it follows that 

L = ( A + ( ~ + r ) f A - ( a - r ) ) / 2 ,  M = (A+(a + r )  - L ( a  - r ) ) / 2 ,  (15) 

where the A, are arbitrary functions. It is obvious that (15) does not contradict (14) if 
we put q* =A,.  

Now only the Gauss equation remains. It can be obtained more easily in the 
following way. Using equations ( 6 ) ,  (12) and (14) we find the Gauss curvature of the 
string world surface, 

LN-M’ - L ~ - M ’  q+q- 
K =  2 

g11g22-g12 -g:1 - (W 
and substitute it into equation (I), 

U,, - U, = 2(q+q-) eu, (16) 
where e-’ = g l l  = .i2. 

From a comparison between (16) and (1) there follows a direct connection between 
the internal geometries of the minimal surfaces and of the surfaces with a constant 
Gauss curvature in a three-dimensional pseudo-Euclidean space E: : the products of 
the corresponding coefficients of the first fundamental forms of these surfaces are equal 
to unity. 

Equation (16) has to be complemented by the boundary conditions if the relativistic 
string is finite. For example, for a closed string, 0 s U s T, we have 

u(0 ,  r )  = U(T, r ) .  

3. The relativistic string in four-dimensional space-time 

Our consideration will be based on the following embedding theorem of differential 
geometry (Eisenhart 1949). If the symmetrical tensor gij, p symmetrical tensors belii 
and p ( p  - 1 ) / 2  vectors vePl j (= -vp,li), i, j = 1, 2, a ,  ,B = 3, 4 , .  . . , p +2, determine the 
two-dimensional surface V2 with the fundamental tensor gij, embedded into the real flat 
space Sp+2 (the Riemann curvature tensor of this space vanishes identically), then and 
only then are the following equations satisfied: 
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v@al/ ,k-vBalk, i  ev(vvpljvvalk - V v p l k ~ ~ a I , ) + g ' ~ ( b p l i , b a l m k  - b p I / k b a / m / ) = O *  (19) 
Y 

Here 
V2 which has only one essential component, 

~ 1 2 1 2  = ~ ( 2 a 2 g 1 2 / a ~ 1 a ~ 2 - a 2 g l l / a ~ 2 a ~ 2 - a 2 g 2 2 / a ~ 1 a u 1 )  + g ' m ( r m , 2 * r / , 1 2 - r m , z z r / , l l ) ,  

the r l , , k  are the Christoffel symbols (see formula ( l l ) ) ,  and the e, are the constants 
equal to r t l .  The semicolon in equations (18) and (19) means covariant differentiation 
with respect to the metric tensor 

is the Riemann-Christoffel curvature tensor of the two-dimensional surface 

(20) 

The constants C,, p = 1 , 2 ,  , . . , p + 2 take into account the metric signature of space 
Sp+2 and they equal k l .  In the theory of the relativistic string, Sp+2 is the Minkowsky 
space so we put C1 = -C, = 1, v = 2,3 ,  . . . , p + 2 .  At any point of the string 
world surface V,, embedded into the flat space Sp+2, there can be constructed the set of 
p orthonormal unit vectors 7," which are orthogonal to the tangent vectors x' and x" l  
of the world surface of the string: 

In the chosen metric of space Sp+2, the constants e, are equal to +1 for the time-like 
vectors q," and e, = -1 for the space-like vectors 7,". From the physical viewpoint in 
the string theory (Rebbi 1974, Scherk 1975) one puts gll  = x 2 >  0, g22 = x 2  < 0, and all 
vectors orthogonal to f and x '  are space-like, and as a consequence e, = -1, LY = 
3 , 4  ) . . . )  p + 2 .  

The world sheet of the string is the minimal surface, so in the isothermal coordinate 
system (6) the vector x F ( v ,  7) which describes this surface obeys the D'Alambert 
equation (7). If the surface is embedded into the three-dimensional flat space ( p  = l ) ,  
then there are no vectors vepli, and equations (17)-(19) are reduced to the first two, in 
this case (17) which is the Gauss equation and (18) which is the Codazzi equation. 

In the case under consideration in coordinate system (6), equation (17), by virtue of 
(20), takes the form 

The tensors ball, are defined by the derivation formulae 

where q: is the set of p orthonormal unit vectors introduced 
account we obtain from expansion (22) 

bell1 = bai22, CY = 3 , 4 ,  . . . , p +  2. 

(22) 

above. Taking (7) into 
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In addition to (6), one can impose on the variables x I 1 ( v ,  T )  the gauge conditions (13). 
Substituting (22) into (13) we obtain 

a = 3  

If the string moves in four-dimensional Minkowsky space ( p  = 2, a = 3,4),  then the 
variables 

6 3 1 1 1 * 6 3 1 1 2 = q *  cos 64111 * 64112 = q+ sin a* 

can be introduced. Equations (21), (18) and (19) now take the form 
1 1  . 2  

811 - gY1- g (g11 - g;:) = -2(q+q-) cos(a+ - a-),  

ff+-a’+. =v1-v2 ,  &-+al. =v1+v2 ,  

(25) 11 vi - Y2 + g (q+q-) sin(a+ -a-) = 0, 

where v1 = v4311, v2 = v4312. In terms of variables 6, = a+ -a- and gll =e-”, equations 
(23) and (25) part from the system (23)-(25): 

(26) 

(27) 

ii - U ”  = 2(q+q-) e’ cos 6, 

e - 8” = 2(q+q-) e” sin 6. 

These equations can be reduced to one by using the complex-valued function w = 
U + i6, 

w-w,”=R ew, (28) 
where R = 2(q+q-) .  So the theory of the relativistic string in four-dimensional space- 
time in gauge (13) is again reduced to the Liouville equation. But in contrast with the 
three-dimensional case (see formula (16)), this equation is for the complex-valued 
function w. 

Let us pass to an arbitrary dimension ( p  > 2) of space-time into which the world 
sheet of the string is embedded. We shall consider the sets of variables bapl and bal12, 
a = 3,4,  . . . , p + 2 as coordinates of p-dimensional Euclidean vectors b’ = ( b 3 l l 1 ,  

6 4 / 1 1 ?  . . . , bp+2111) and b 2  = (b3112, b4112, . . . , bp+2112). Introducing the variable 8 as the 
angle between these vectors, we can reduce (17) to (26) again. Let us show that the 
particular solution of the system (17)-(19) is 6 = 0, vpaij = 0 and bali, are the constants. 
Equation (18) is satisfied identically in this case, and (19) gives 

bLlbb = b t / b i ,  a zp,  a ,@ = 3 , 4 , .  . . , p + 2 .  

This is also identical, as for 6 = 0 we have bb =Ab:, where A is constant. Now the 
essential equation is equation (26) which is reduced to (16). So in the case of space-time 
with any dimension there are such string motions which are described by one real 
Liouville equation (16). 

4. Investigation of the soliton solutions 

Now we shall study the fundamental equation (1) for the real function U(X, t ) .  The 
general solution of this equation, obtained by Liouville (1853), is 

(29) eu(x, t )  - - 8 f ’ ( ~ + t ) g ’ ( ~ - t ) / R ( f ( x + t ) - g ( ~ - t ) ) * ,  
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where f and g are arbitrary functions and the prime denotes differentihtion with respect 
to the function argument. However, the general solution of equation (1) is not of great 
interest physically. From this point of view the particular solutions of (1)-the 
so1itonsi'-are more attractive. They have the form 

U @ ,  t )  = F ( x  - u t ) ,  (30) 
where / V I  < 1. It is not easy to see these solutions in  formula (29). It is simpler to insert 
(30) into (l), which gives the following ordinary differential equation for F :  

(1 - v2)F" --R e". 

If R > 0, then we obtain 

e"'=: (/?z2/32R) sech2[(mx - - ~ t - ~ o ) / 8 J 1 - ~ ~ ] ,  (31) 
where m is an arbitrary constant. As will be shown below, m is the mas5 of the soliton 
131). If R < 0, then we obtain two kinds of soliton: 

(32) '2 ell2 = (m2/321RI) cosech2[(mx -- ut -xo)/8+l  - v 3, 
e u 3 =  (m2/321RI) cosec2[(mx - ~ t - x ~ ) / 8 J l - u ~ ] .  (33) 

With the obvious solutions (3 1)-(33), one can easily choose the functions f and g in 
the general solution (29) so that (29) will result in (31)-(33). For example, for soliton 
(31), taking into account the formula 

sech2$(y - z ) = 4 e Y  eZ/(eY+e')2,  

we have to put 

f(x + t )  = ( 8 / m )  exp[md(l-  v ) / ( l +  u ) ( x  + t-xo)/8], 

g(x - t )  = - (8/m) exp[-md(l + v ) / ( l -  &x - t - x o ) / 8 ] .  

The solutions (31) and (32) are solitary waves, moving with a velocity less than the 
speed of light. Solivtion (33) is the periodical soliton, describing the 'comb' of the waves. 
It should be noted that (32) and (33) have the non-integrable singuiarities 

whenz-,O, z = ( x - ~ t - x ~ ) / J l - ~ ~ ,  i = l , 2 ,  - 2  e"1-z , 
and thereby they do not formally satisfy the requirements usually imposed on soliton 
solutions (Scott et a1 1973, Whitham 1974). However, to simplify the terminology, we 
shall call these solutions 'solitons', and it will be shown that their singularities do not 
lead to the principal difficulties in attempting to interpret these solutions as extended 
particles. 

Apart from one-soliton solutions, equation (1) also has n -soliton solutions 
(Andreev 1976). Such a solution describes one soliton moving with arbitrary velocity 
and (n - 1) solitons moving with the speed of light. Only soliton (31) follows from the 
n-soliton solution at n = 1, while the other solitons (32), (33) cannot be obtained in such 
a way. For simplicity, we shall restrict our consideration to the one-soliton solutions 
only. 

The Liouville equation (1) is the Euler equation for the Lagrangian 

~ = $ ( u ? - u f ) + ~  e'. (34) 

t Equation (2) in variables x It t has been studied by the inverse scattering method (Andreev 1976). However, 
the soliton solutions of this equation have not been discussed from the viewpoint of particle physics. 
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The potential energy in this Lagrangian, V ( u )  = -R err, is a monotonic function of the 
variable U. Usually, the relativistic invariant soliton-like solutions are considered in the 
models with spontaneous symmetry-breaking, where V ( u )  has at least two minima 
(Dashen er a1 1974b, Rajaraman 1975, Jackiw 1977). This difference between the 
model under consideration and the ones usually studied leads to some peculiarities. For 
instance, it is impossible to introduce the topological charge for the solitons of equation 
(1) by standard methods. 

Now let us show that by using the Lagrangian (34) we can define the total energy, 
momentum and mass of the solutions (31)-(33) in a correct relativistic correlation. We 
take the energy-momentum tensor for the solitons in the form 

Ow’= Tw“+(m2/32)qwY- (m2/16)vwv” ,  (35) 
where Tw” is the canonical energy-momentum tensor of the field U (x, t ) ,  corresponding 
to the Lagrangian density (34): 

7@” = ( a 2 / a ( a w u ) ) a ” U  - qwu2,  

where ,U, v = 0, 1 , ~ ’ ”  = -77”  = I, U’* is the velocity vector of the soliton, v o  = 1/41 - v 2  
and v 1  = v/d1 - U  . The term added to Tw” in formula (35) does not depend on the 
coordinates x, t and leads to convergent integrals at infinity for the energy and 
momentum of the solitons: 

p ‘  = Ofo[uC(x, t ) ]  dx. (36) 5 
Substituting the solutions u,(x, t )  of (31)-(33) into (36) we obtain 

-- 
~ ~ = - m / J l - v ~ ,  p1 =-mv/J1-u2,  

E, = mIi/ 41- v 2 ,  pi = mIiv/J1 - v2 ,  
(37) 

i = 2, 3, 

where I2 = SF dx cosech2 x, I3 = dx(cot2 x - 1). So in the first case one can consider 
the constant m as the mass of the soliton. For the solitons (32) and (33) the masses are 
equal to mI,, i = 2 ,  3. The integrals I,, divergent at zero, can be regularised by 
introducing a cut-off, for example. However, it will be sufficient that between E, and P, 
in formulae (37) a correct relativistic correlation does exist. Just this fact enables us to 
interpret the solitons as extended particles with non-zero rest mass even in the classical 
theory. 

Let us turn to the investigation of the soliton stability. At first, we consider the static 
soliton solutions which are defined by formulae (31)-(33) at v = 0. We represent the 
solution of equation (1) in the form 

u ( x ,  r )  = ~ , ( x ) + e ~ ~ ~ $ ( x ) .  (38) 
Substituting (38) into (1) leads to an equation for + ( x )  which has the form of the 
one-dimensional Schrodinger equation with the potential V [ u ,  (x)] = -R cur"): 

(-d2/dX2+ V [ U , ( X ) ] + ( X )  = w 2 $ ( x ) ,  (39) 
where 

V [ u l ( x ) ]  = -(m2/32) sech2(mx/8), (40) 

V [ u 2 ( x ) ]  = (m2/32) cosech2(mx/8), (41) 

V [ u 3 ( x ) ]  = (m2/32) cosec2(mx/8). (42) 
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If in equation (39) w 2  > 0, the solution u i ( x )  is stable in the classical theory, and by virtue 
of the relativistic invariance ui(x ,  t )  is stable as well. When w 2  < 0, the correction to 
u i ( x )  in (38) increases exponentially with time, and the soliton is unstable. 

Equation (39) with potentials (40)-(42) can be solved exactly (Flugge 1971, Morse 
and Feshbach 1953). In the first case w 2  has one negative value, U :  = -m2/64, and a 
continuous spectrum beginning from the translation mode = 0. Because w :  < 0, the 
soliton solution u l (x ,  t )  is already unstable in classical theory. 

For potential (41) w 2  has the continuous spectrum w 2  > 0 and the translation mode 
= 0 which again adjoins the continuous spectrum. The solution u2(x,  t )  is stable. 
Potential (42) can be reduced to the Poschl-Teller potential (Flugge 1971). The 

periodicity of this potential turns out to be unessential for the solutions of equation (39), 
as the neighbouring potential wells are separated by impenetrable barriers. Therefore 
we can restrict ourselves to a consideration of one of these wells. In this case there are 
only the discrete spectrum w', = m 2 ( n  + 1)'/64, n = 1,  2 , .  . . and the zero-frequency 
mode w o  = 0. The solution u3(x,  t )  is stable. 

So in classical theory the soliton u l ( x ,  t )  can be considered as an unstable particle 
with mass m and a lifetime of about 8m- l .  The solitons u2(x,  t )  and u3(x, t )  describe 
stable particles. 

Let us go to the discussion of equation (28) for the complex function w. Obviously, 
the Liouville solution (29) can be generalised to this equation if we consider the 
functions f and g to be complex-valued, 

f ( x + t ) =  f l ( x + t ) + i f 2 ( x + t ) ,  g ( x  - t )  = gt(x  - t )  + ig2(x - t ) .  

In this case the solution of the system (26), (27) is 

Equation (28), as in the case of the real function w, has the soliton solution - 
(43) 

where A and S are arbitrary complex constants: A = al  + ia2, S = SI + iS2. Separating 
the real and imaginary parts in (43), we obtain 

4(a: + a : )  
IRI(cosh 221 +COS 222)' 

a 2  + a t  tanh z1 tan 2 2  

a l  - a 2  tanh z1 tan z2'  
eu = tan 50 = 

1 where zi  = a i ( a  - ur)/Jl-  v +Si ,  i = 1, 2. 
Equations (26) and (27) are the Euler equations for the Lagrangian density 

9 = ; ( U 2  - U ' * )  -+(e2 - 0") + R e" cos e. 

2 ? = ~ ( ~ ~ - u " ) - ~ ( ~ ~ + 8 ' ~ ) + R  2 eucosO, 

(44) 

The corresponding Hamiltonian is 

where rU = d 9 / a U  = U and re = a 9 / a e  = -8. The free Hamiltonian of the field 8 is 
included into 2 with sign minus. 
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5. Quantum theory 

There are many approaches to the construction of quantum theory for field models with 
particle-like classical solutions (see e.g. Dashen et a1 3 974a, b, 1975, Faddeev and 
Korepin 1975, Goldstone and Jackiw 1975, Rajaraman 1975). The ideas of these 
methods differ at first sight, but the basic equations determining the spectrum of the 
states turn out to be practically the same. Without going into details, we shall follow the 
so-called canonical quantisation of the particle-like solutions, which is closer to the 
usual field theory approach, although somewhat formal (Tomboulis 1975). In this 
section only equation (1) will be considered for the real function U. 

The field U ( X ,  t )  will be represented in the form 

where u,(x - x u )  are the soliton solutions (31)-(33) with U = 0. We shall consider as 
coordinates of the system the centre-of-mass position of the soliton xo ( t )  = xo + ut and 
the field $ ( x ,  t ) .  The canonical conjugate momenta are p ( t )  and ~ ( t ) ,  respectively. 

After substituting (45) into (35), the total Hamiltonian can be divided into the free 
term and the interaction Hamiltonian, 

H = HO + HI, 

where Ho = m +: dx (T' -t $ I 2  - $'R e".) is the Hamiltonian of the particle with mass 
m and of the field $(x ,  t ) ,  imbedded into the external classical field -R eUL. The 
Hamiltonian HI ,  which describes the interaction of $(x ,  t )  with the soliton, depends on 
x o ,  p ,  (I, and T. The explicit form of HI is complicated (Tombouiis 1975), and we do not 
write it here. 

It follows from the Hamiltonian equations with Ho that 

Below we shall use the usual method of quantisation in an external field (Schweber 
1961) by the expansions 

where the $ k ( X )  compose a complete set of solutions of equation (39) with excluded 
translation mode: 

The symbol x k  also represents here the integration over k if necessary. The canonical 
commutation relations 
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are postulated, and the Hilbert space of the states /P,  { k , } )  = b & , ) ~ P )  is constructed. Here 
P is a common momentum and{k,} is a set of meson momenta ‘The perturbation theory 
can be developed on this basis as usual. 

After the transition to the normal product of the operator? bk, the free Hamiltonian 
WO takes the form 

Calculating the matrix elements of Ho over the state vectors /P. { k , ) ) ,  we obtain the 
energy spectrum of the system in the zero approximation of the perturbation theoiy. It 
is obvious that this spectrum is defined completely by the eigenvalues in equation (39). 

The soliton (31), being unstable in classical theory, will be unstable in the quantum 
case too, because the correction to the energy (46) from the continuous spectrum is 
purely imaginary in this case. 

In quantum theory the soliton (32) corresponds to the stable particle with mass rn, 
and the field $(x, t )  describes the massless mesons. In the model under consideration 
there is no conservation law of the soliton number (the topological charge), so the 
quantum tramitions of the soliton particles into the meson states are nor in principle 
forbidden. 

The periodical soliton (33) gives the richest spectrum, 

Eo = m, E, ,=m+m(n + l ) / 8 ,  n = 1, 2,  

It is interesting that the spectrum is equidistant if we do not consider the lowest state 
with energy Eo. The spacing of the energy levels is defined by the soliton mass m / 8  and 
can take any value. The states of this spectrum are time-independent only if the 
interaction HI  is neglected. The Hamiltonian HI leads to the transition between these 
states, and in reality we have a series of resonances. 

The periodical soliton and the spectrum created by it are well suited to the theory of 
the closed relativistic string (Rebbi 1974, Scherk 1975). In the usual approach, this 
model has the equidistant spectrum of the stationary states which form the basis for the 
construction of the dual resonance models. The zero width of the energy levels is an 
essential defect of these models. In this connection, the mass spectrum obtained by 
taking into account the soliton solutions in the theory of the relativistic string is more 
realistic. 

6. Conclusions 

The basis of the geometrical approach to the relativistic string theory and to the 
Born-Infeld scalar field model is the change of the variables .x,(a, T )  to one function 
U (a, T )  = -In i . Mathematically, the string coordinates x, (a, T )  and the function 
u ( a ,  7)  carry the same information about the dynamics of the system because we can 
reconstruct x,(a, 7)  from the known function u ( a ,  T )  by integrating formulae (10) or 
(22). However, this transition cannot be considered, as the canonical transformation 
and quantisation in terms of the variables x,(a, T )  and and u ( a ,  T )  gives different 
results. In this connection, a question arises: what are the variables which should be 
used to quantise the nonlinear models? The physical evaluation of the final results will 
probably be the only decisive criterion here. 

2 
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